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Abstract
Employing projection methods from kinetic theory, we study the non-
Markovian quantum evolution of a two-level atom that is coupled to a single
mode of the electromagnetic field. The interaction between the atom and field
mode is described by the damped Jaynes–Cummings model. The general
case is considered, in which dissipation is generated by both a photonic
and an atomic reservoir of finite temperature. Only one special choice is
made. The frequencies of the atom and field mode are in the same ratio as
the temperatures of the atomic and the photonic reservoirs. Making use of
Laplace transformation, we show that the atomic density matrix evolves to the
state of maximum von Neumann entropy if the time, the cube of the initial
electromagnetic energy density, the inverse of the photonic damping parameter
and the inverse of the atomic damping parameter tend to infinity equally fast.
We propose a large class of states from which the full density operator for
the atom and field may start. This class includes entangled states. Expansion
of the time-dependent exponential of the Laplace backtransform enables us to
derive the limit of maximum entropy directly, without explicit evaluation of
the atomic density matrix. We interchange limits and sums without proof, so
our derivation is not entirely rigorous. Next, we remove the photonic reservoir.
Then the damping process gets a sequential character. The field mode is
assumed to start from a photon-number state. For the special choice of zero
temperature and detuning we verify that the limit of maximum entropy survives
the qualitative modification of the model. The only consequence is a slightly
different scaling between the parameters that become large. Finally, we argue
that our case study could be of value in finding out to what extent quantum
dissipative processes obey the general principles of thermodynamics.
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1. Introduction

The Jaynes–Cummings model [1] with cavity damping offers an excellent opportunity to
perform an in-depth examination of an open quantum system exhibiting non-Markovian
dynamics. Owing to the well-known Rabi oscillations, which cause periodic energy exchange
between the two-level atom and the privileged mode of the electromagnetic field, the atomic
evolution possesses a quasi-reversible character for sufficiently small times. The main findings
of the Jaynes–Cummings case study were published in paper I [2]. The cavity temperature
and the detuning parameter were assumed to equal zero, because for that particular choice the
model could be analytically solved [3]. Consequently, the behaviour of the atomic density
matrix could be monitored with the help of modest numerical efforts.

Much attention was given to the atomic evolution in the regime of weak damping. This
led to the numerical confirmation of a limit of maximum entropy, which was proposed in [3].
According to this result, the atomic density matrix was to converge to the so-called central state
if the parameter for cavity damping became small, the initial energy of the electromagnetic
field large, and the time large. Lying at the centre of atomic phase space, the central state
maximizes the atomic von Neumann entropy. The evolution of this last quantity was plotted
for suitable parameter choices, and indeed a rise to the maximum value was observed. It
took place by oscillatory convergence to a plateau, the length of which was comparable to
the lifetime of a photon. This perfectly stationary stage of the atomic evolution was followed
by a more common exponential decay to zero, the value belonging to the atomic ground
state.

In paper I, it was suggested that the limit of maximum entropy might be of some help
in resolving the numerous open questions on the relation between non-relativistic quantum
mechanics and the second law of thermodynamics [4]. As seen from a strict point of view,
this statement was premature. Before starting any deeper investigations, one should rule
out the unpleasant possibility that the entropy plots of I were the result of artefacts. These
would stem from the particular choices that were made, for instance, the complete disregard
of temperature effects. Obviously, conclusions of thermodynamic nature must be questioned,
if they are based on microscopic derivations at zero temperature.

By the same token, one must critically regard those treatments that adopt a thermal state
as the initial condition of the undamped Jaynes–Cummings model [5]. Preparation of this
state requires interaction with a thermal reservoir for all negative times. The physical reasons
why the reservoir is inactive at positive times remain obscure. If one chooses as the initial
condition of the undamped Jaynes–Cummings model a direct product of an atomic state and
a coherent state, then one generates the well-known evolution of collapse and revival of Rabi
oscillations [6]. Numerous studies of this remarkable phenomenon have been performed with
the aid of quantum entropy and related notions [2, 7].

The purpose of this paper is to put the thermodynamic relevance of paper I beyond all
doubt. We are going to work with the general version of the damped Jaynes–Cummings
model, for which both the atom and field are coupled to a reservoir of finite temperature. The
only restriction is that the frequencies of the atom and field mode must be in the same ratio
as the temperatures of the atomic and the photonic reservoirs. Again we derive a limit that
maximizes the atomic von Neumann entropy. In contrast to I, we do not make special choices
for the initial state of the density operator. Instead, we propose a large class of states that are
allowed. Moreover, we verify that a change of the damping mechanism has no consequences
for the existence of a limit of maximum entropy. This check is of utmost importance. If we
want to give a thermodynamic twist to our findings, then surely they may not depend on such
microscopic matters as the type of energy sink that is used.
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To facilitate the reading of this paper, we present a short summary. In section 2, the master
equation for the full density operator is converted to a c-number recursion in four dimensions.
The latter can be put into algebraic form by means of a Laplace transformation. Consequently,
the physics of the model is hidden in a set of contour integrals over meromorphic functions.
As in [8], a completely general temperature transformation is carried out, which shifts one
single pole to the origin of the complex plane. It guarantees that for large times the atom and
field evolve to a thermal state. The final preparatory step consists of a matrix diagonalization,
which makes the location of all poles explicit. Adopting the language of kinetic theory, we
may say then that each pole generates a normal mode of the dynamics.

In section 3, we demonstrate that a separation of timescales occurs if the parameters for
atomic and photonic damping become small. Projection techniques from kinetic theory [9]
allow us to decompose the dynamics into a fast part, which relates to the Jaynes–Cummings
interaction, and a slow part, which relates to the approach to thermal equilibrium. In the limit
of weak damping these two subdynamics no longer depend on each other. The corresponding
equations could very well be the starting point of further research, for instance, a precise study
of the collapse and revival of Rabi oscillations [6] at finite temperature.

Ignoring this last option, we use the weak-damping description to establish, in section 4,
the desired limit of maximum entropy. Through an expansion of the time-dependent
exponential factor of the Laplace backtransform, we manage to construct a direct derivation,
which does not demand explicit computation of the atomic density matrix. We interchange
limits and sums without proof, so our derivation is not entirely rigorous. In contrast, in section 5
we do maintain mathematical rigour. Removing the photonic energy sink, we demonstrate
that the limit of maximum entropy survives a qualitative modification of the damping process.
Finally, in section 6 we argue that our case study indeed serves general purposes. The non-
Markovian dynamics that has been uncovered might give us a lead in finding out to what extent
quantum dissipative processes obey the general principles of thermodynamics.

2. Decomposition of the dynamics into normal modes

2.1. The model

Resting on the electric-dipole and rotating-wave approximations, the Jaynes–Cummings
Hamiltonian

H = σ+ ⊗ a + σ− ⊗ a† + �(i+ − i−) ⊗ 1 (1)

models the interaction between a two-level atom (A) and a single privileged mode of the
quantized electromagnetic radiation field (F ). The Hamiltonian acts on the product Hilbert
space C2 ⊗ HF , where C2 is spanned by the excited state ê1 = (1, 0)T and the ground state
ê2 = (0, 1)T of the atom.

The four matrices

i+ =
(

1 0
0 0

)
i− =

(
0 0
0 1

)
σ+ =

(
0 1
0 0

)
σ− =

(
0 0
1 0

)
(2)

generate all atomic operators. The number states {|n〉 = (n!)−1/2(a†)n|0〉}∞n=0 span HF , the
Hilbert space of the field. The ladder operators of the privileged mode are denoted by a and
a†. The commutator [a, a†] is equal to unity and the state a|0〉 is identical to the zero element
of HF . Choosing the coupling constant g of the Jaynes–Cummings interaction as a scale,
we use the detuning parameter � = (ωA − ωF )/(2g) to measure the difference between the
frequency ωA of the atomic transition and the frequency ωF of the field mode. This difference
may not become arbitrarily large, otherwise the rotating-wave approximation is violated.
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We introduce dissipation by connecting both the atom and the field to a thermal reservoir
of Markovian nature. There is no interaction between the atomic and the photonic reservoirs.
By way of the well-known weak-coupling procedure [10], we derive for the full density
operator ρ(t) the following master equation:

d

dt
ρ(t) = L1[ρ(t)] +

κ

1 + n̄
L2[ρ(t)] +

2γ

1 − 2d∞
L3[ρ(t)]. (3)

We have moved to the interaction picture, and divided by the coupling constant g. Therefore,
the time t, the strength κ of photonic damping and the strength γ of atomic damping are
dimensionless.

As in I, the conservative term of (3) is given by

L1[ρ] = −i[H,ρ] . (4)

We allow the inverse temperatures βA and βF of the atomic and the photonic reservoirs to be
finite. Then the operator describing photon loss takes the form [11]

L2[ρ] = 2(12 ⊗ a)ρ(12 ⊗ a†) − (12 ⊗ a†a)ρ − ρ(12 ⊗ a†a) + 2n̄[(12 ⊗ a†)

× ρ(12 ⊗ a) + (12 ⊗ a)ρ(12 ⊗ a†) − (12 ⊗ a†a)ρ − ρ(12 ⊗ aa†)]. (5)

Parameter n̄ stands for the average number of thermal photons in the privileged mode. The
operator governing atomic dissipation appears as [11]

L3[ρ] = (1/2 − d∞)[2(σ− ⊗ 1)ρ(σ+ ⊗ 1) − (i+ ⊗ 1)ρ − ρ(i+ ⊗ 1)]

+ (1/2 + d∞)[2(σ+ ⊗ 1)ρ(σ− ⊗ 1) − (i− ⊗ 1)ρ − ρ(i− ⊗ 1)]

− �[(i+ ⊗ 1)ρ(i− ⊗ 1) + (i− ⊗ 1)ρ(i+ ⊗ 1)]. (6)

The contribution with � takes into account atomic dephasing. It is caused by collisions with
residual gas molecules. Parameter d∞ indicates the degree of atomic inversion for t → ∞.
Derivation of the Bloch equations on the basis of (3) and (6) gives the relaxation times
T −1

1 = 4γ (1 − 2d∞)−1 and T −1
2 = 2γ (1 + �)(1 − 2d∞)−1.

The dependences of n̄ and d∞ on temperature follow from the relations

n̄

1 + n̄
= exp(−βFωF ) ≡ λ

1 + 2d∞
1 − 2d∞

= exp(−βAωA). (7)

As long as κ , n̄, γ and � remain non-negative, and the inequality |d∞| � 1/2 is fulfilled, the
master equation (3) preserves the trace, the self-adjointness and the positivity of the initial
density operator ρ(t = 0).

From here onwards, we assume that the relation

βAωA = βF ωF (8)

holds true. Then the factorized thermal state

ρth =
(

1/2 + d∞ 0
0 1/2 − d∞

)
⊗ exp(−βFωF a†a)/TrF [exp(−βFωF a†a)] (9)

commutes with the Jaynes–Cummings Hamiltonian H. Hence, the condition of detailed balance
is fulfilled. This property implies that for long times the composite system of atom and field
mode respects all principles of non-equilibrium thermodynamics [12]. Indeed, the thermal
state (9) turns out to be a fixed point of the dynamics. We stress that for reservoirs of equal
temperature the constraint (8) forces us to take the detuning parameter as zero.
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2.2. Towards an algebraic equation

To get rid of the operator character of (3), we resort to the same strategy as in I. Decomposing
the density operator as

ρ(t) = i+ ⊗ ρ1(t) + σ− ⊗ ρ2(t) + σ+ ⊗ ρ3(t) + i− ⊗ ρ4(t) (10)

we gather the matrix elements of the field operators {ρj (t)} in the following manner:

v′′(t; m,n) = [
ρ1(t)m,n, ρ2(t)m+1,n, ρ3(t)m,n+1, ρ4(t)

T
m+1,n+1

]
(11)

with m,n � −1. By definition, a matrix element ρj (t)m,n = 〈m|ρj (t)|n〉 vanishes as the label
of the number state 〈m| or |n〉 becomes negative.

From (3) one derives a differential equation for the new four-dimensional vector. It reads

d

dt
v′′(t; m,n) = A′′(m, n)v′′(t; m,n) + S′′(m, n)v′′(t; m + 1, n + 1)

+ λT ′′(m, n)v′′(t; m − 1, n − 1) (12)

with m,n � −1. For the specification of the (4 × 4) matrices A′′, S′′ and T ′′ we make use of
the theta symbol

θn =
{

0 if n � −1
1 if n � 0.

(13)

Then the elements of A′′ can be expressed as

A′′(m, n)11 = [−κ(m + n) − κλ(m + n + 2) − 2γ ]θmθn

A′′(m, n)22 = [−κ(m + n + 1) − κλ(m + n + 3) − γ (1 + �)(1 + λ) + 2i�]θm+1θn

A′′(m, n)33 = [−κ(m + n + 1) − κλ(m + n + 3) − γ (1 + �)(1 + λ) − 2i�]θmθn+1

A′′(m, n)44 = [−κ(m + n + 2) − κλ(m + n + 4) − 2γ λ]θm+1θn+1 (14)

A′′(m, n)kl = A′′(m, n)lk A′′(m, n)14 = A′′(m, n)23 = 0

A′′(m, n)12 = −i(m + 1)1/2θmθn A′′(m, n)34 = −i(m + 1)1/2θmθn+1

A′′(m, n)13 = i(n + 1)1/2θmθn A′′(m, n)24 = i(n + 1)1/2θm+1θn.

For the elements of S′′ one finds

S′′(m, n)11 = 2κ(m + 1)1/2(n + 1)1/2θmθn

S′′(m, n)22 = 2κ(m + 2)1/2(n + 1)1/2θm+1θn

S′′(m, n)33 = 2κ(m + 1)1/2(n + 2)1/2θmθn+1 (15)

S′′(m, n)44 = 2κ(m + 2)1/2(n + 2)1/2θm+1θn+1

S′′(m, n)41 = 2γ θm+1θn+1.

All other elements are vanishing. The matrix T ′′ is determined by

T ′′(m, n)kl = S′′(m − 1, n − 1)lk. (16)

Note that the temperature enters our equations solely over the parameter λ. One needs the
identities (7) and (8) to achieve this.

We assume that ρ(t) converges to the fixed point ρth for large times. Consequently, the
limit

lim
t→∞ v′′(t; m,n) = δm,n(1 − λ)(1 + λ)−1λn+1(θn, 0, 0, θn+1)

T (17)
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holds true. One should safeguard the validity of (17) from the very outset, i.e., already at the
level of the primal equation (12). To that end, we map the right-hand side of (17) to zero for
n � 0. This can happen by means of the transformation

v′(t; m,n) = v′′(t; m,n)
(18)

v′(t; n, n) = (θnQ1 + δn,−1Q2)v′′(t; n, n) − λθnQ2v′′(t; n − 1, n − 1)

with m,n � −1 and m �= n. The matrices are chosen as

Q1 =




1 0 0 −1
0 0 0 1
0 1 −1 0
0 1 1 0


 Q2 =




0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0


 . (19)

The inverse transformation reads

v′′(t; n, n) = [
θnQ

−1
1 + δn,−1Q

T
2

]
v′(t; n, n) + θn

n+1∑
k=1

λkQ−1
1 Q2Q

−1
1 v′(t; n − k, n − k). (20)

Upon subjecting (12) to transformation (18), we recover (12) with all double primes replaced
by single primes. The matrices carrying a single prime are presented below.

In the following subsection we shall decompose the dynamics into normal modes. To
facilitate the associated matrix diagonalization, we make the split

A′(m, n) = A′
0(m, n) + A′

1(m, n). (21)

Rather than A′, we shall diagonalize the matrix

A′
0(n, n) = θnQ1A

′′(n, n; λ = � = 0)Q−1
1 A′

0(m, n) = A′′(m, n; λ = � = 0) (22)

with m �= n. The excess term is found as

A′
1(n, n)11 = −2κλ(n + 1)θn A′

1(n, n)21 = −2γ λθn

A′
1(n, n)22 = [−2κλ(n + 1) − 2γ λ]θn

A′
1(n, n)33 = A′

1(n, n)44 = [−κλ(2n + 3) − γ (λ + � + λ�)]θn

A′
1(m, n)11 = −κλ(m + n + 2)θmθn (23)

A′
1(m, n)22 = [−κλ(m + n + 3) − γ (λ + � + λ�)]θm+1θn

A′
1(m, n)33 = [−κλ(m + n + 3) − γ (λ + � + λ�)]θmθn+1

A′
1(m, n)44 = [−κλ(m + n + 4) − 2γ λ]θm+1θn+1

with m �= n. It contains all contributions that are proportional to λ or �.
For the remaining primed matrices one has

S′(n, n)11 = [2κ(n + 1) − 2γ ]θn S′(n, n)12 = [−2κ − 2γ ]θn

S′(n, n)22 = [2κ(n + 2) + 2γ ]θn+1 S′(n, n)21 = 2γ θn+1

S′(n, n)33 = S′(n, n)44 = 2κ(n + 1)1/2(n + 2)1/2θn

T ′(n, n)11 = T ′(n, n)22 = 2κnθn−1 T ′(n, n)23 = −in1/2θn−1

T ′(n, n)33 = T ′(n, n)44 = 2κn1/2(n + 1)1/2θn−1

S′(m, n) = S′′(m, n) T ′(m, n) = T ′′(m, n)

(24)

with m �= n. The matrix elements, which are not fixed by (23) and (24), are identical to zero.
The transformed differential equation (12) can be cast into algebraic form by means of

the Laplace transform

f̃ (z) = −i
∫ ∞

0
dt eizt f (t) f (t) = i

2π

∫
C

dz e−izt f̃ (z) (25)
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where Im z is positive. We obtain the following result using (21):

[z14 − iA′
0(m, n)]ṽ′(z; m,n) = v′(t = 0; m,n) + iS′(m, n)ṽ′(z; m + 1, n + 1)

+ iλT ′(m, n)ṽ′(z; m − 1, n − 1) + iA′
1(m, n)ṽ′(z; m,n) (26)

with m,n � −1. The master equation (3) has been converted to a four-dimensional recursion
relation of second order. The iterative solution can be readily constructed [3, 8]. No problems
with convergence occur as long as the parameter λ stays below a certain bound. For experiments
in a microwave cavity, temperatures of the order of 0.1 K are admissible [8].

2.3. Diagonalization of the frequency matrix

In the dynamics of the damped Jaynes–Cummings model two different timescales can be
distinguished.

The first one relates to the time g−1 that is needed for energy exchange between the atom
and field mode; the second one relates to the times (gκ)−1 and (gγ )−1 for which energy losses
to the reservoirs become sizeable. We can put these simple qualitative ideas into mathematical
shape by subjecting the recursion (26) to a transformation that diagonalizes the frequency
matrix [z14 − iA′

0(m; n)]. We then make the poles of the Laplace transform ṽ′ visible. By
Jordan’s lemma, the inverse Laplace transformation comes down to summing up the residues
of all poles. One may say therefore, that each pole generates a normal mode of the dynamics.

The diagonalization procedure relies on the identity

A′′(m, n; λ = � = 0) = I (n) ⊗ B(m) + B(n)† ⊗ I (m) (27)

where the usual right-Kronecker direct product has been employed [13]. The matrices on the
right-hand side are defined as

B(n) =
(

(−κn − γ )θn −i(n + 1)1/2θn

−i(n + 1)1/2θn (−κn − κ + 2i�)θn+1

)
I (n) =

(
θn 0
0 θn+1

)
. (28)

The eigenvalues and normalized eigenvectors of B(n) have the following neat structure:

µη(n) = [−κn − κ/2 − γ /2 + i� − iηu(n)]θn + 2i�δn,−1δη,−1

q̂η(n) = ν−1
η (n)

(
(n + 1)1/2

ηu(n) − iκ/2 + iγ /2 − �

)
θn +

(
0
1

)
δn,−1δη,−1 +

(
1
0

)
δn,−1δη,+1.

(29)

The abbreviations

νη(n) = [n + 1 + |ηu(n) − iκ/2 + iγ /2 − �|2]1/2

(30)
u(n) = [n + 1 − (κ/2 − γ /2 − i�)2]1/2

have been used, with η = ±1. The real part of u(n) is chosen to be positive.
The diagonalization can be effectuated with the help of the transformation

U(m, n) = [δm,nθnQ1 + (1 − δm,nθn)14]

(
q̂∗

+(n)1 q̂∗
−(n)1

q̂∗
+(n)2 q̂∗

−(n)2

)
⊗
(

q̂+(m)1 q̂−(m)1

q̂+(m)2 q̂−(m)2

)
. (31)

The matrix U is not unitary, but computation of its inverse poses no problems of course. If
vectors and matrices are transformed according to

v(t; m,n) = U−1(m, n)v′(t; m,n)

A0(m, n) = U−1(m, n)A′
0(m, n)U(m, n)

A1(m, n) = U−1(m, n)A′
1(m, n)U(m, n) (32)

S(m, n) = U−1(m, n)S′(m, n)U(m + 1, n + 1)

T (m, n) = U−1(m, n)T ′(m, n)U(m − 1, n − 1)
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then the validity of (26) is not affected by a suppression of all primes. The transformed
frequency matrix is indeed diagonal. Its entries follow from

A0(m, n)11 = [µ+(m) + µ∗
+(n)]θmθn

A0(m, n)22 = [µ−(m) + µ∗
+(n)]θm+1θn

A0(m, n)33 = [µ+(m) + µ∗
−(n)]θmθn+1

A0(m, n)44 = [µ−(m) + µ∗
−(n)]θm+1θn+1.

(33)

The other matrices figuring in (32) will be evaluated in so far as required.
From the last result the location of the poles of ṽ(z; m,n) can be read off. All normal

modes suffer from dissipation, the case m = n = −1 excepted. The matrix A0(−1,−1) is
vanishing, so for j = 2 the vector component ṽ(z; −1,−1)j has a simple pole at z = 0. By
definition, for j �= 2 this component equals zero. In carrying out Laplace backtransformation,
the pole at z = 0 gives rise to a residue that, in contrast to all other residues, does not depend
on time. Hence, verification of limit (17) takes place by simply discarding all damped modes.
Now the advantage of the temperature transformation becomes manifest. If we refrain from
carrying out (18), then all poles become dissipative. It is no longer clear which ones may be
dropped for large times. In [8] a rigorous check of (17) has been made for the case of pure
photonic damping, i.e., γ equal to zero.

Having completed the diagonalization of the frequency matrix, we can commence with an
analysis of the normal modes. Moreover, we can try to select those modes that are of interest
if it comes to establishing a limit of maximum entropy for the two-level atom. This is the
subject of the following section.

3. Separation of timescales by means of projection

3.1. Definition of projectors

If we linearize in κ and γ , the eigenvalue (29) takes on the form

µη(n) = −iη(n + 1 + �2)1/2 + i� − κn − (κ + γ )/2 + η�(n)(κ − γ )/2 (34)

where n is non-negative and the notation

�(n) = �(n + 1 + �2)−1/2 (35)

appears. Insertion of (34) into (33) yields

A0(n, n)11 = −2κn − κ − γ + �(n)(κ − γ )

A0(n, n)22 = 2i(n + 1 + �2)1/2 − 2κn − κ − γ

A0(n, n)33 = −2i(n + 1 + �2)1/2 − 2κn − κ − γ

A0(n, n)44 = −2κn − κ − γ − �(n)(κ − γ )

(36)

for n � 0. From these expressions it is obvious that the density operator of the damped
Jaynes–Cummings model evolves at two different paces.

The first and fourth diagonal elements describe modes of a purely dissipative character,
which undergo slow variations on the timescales of (gκ)−1 and (gγ )−1. The two other
diagonals correspond to oscillating modes. Being driven by the interaction time g−1 of the
Jaynes–Cummings Hamiltonian, these modes are of fast variation. We shall see that they are
of minor importance for the derivation of a limit of maximum entropy.

The separation of timescales, as displayed by the pole structure of the solution vector
ṽ(z; n, n), can be transferred to the unprimed recursion (26) without much effort. We let
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ourselves to be guided by well-known projection techniques, which were developed for
investigating the collective modes of fluids [9]. The findings of (36) invite us to define
the projectors

Ps =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1


 Pf =




0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


 (37)

and decompose the solution vector as

v(t; n, n) = vs(t; n, n) + vf (t; n, n) vj (t; n, n) = Pj v(t; n, n) (38)

with n � 0 and j = s, f .
We claim that vs(t; n, n) is a slow component, and that vf (t; n, n) is a fast component.

This is confirmed by writing down the equations of motion. With the help of the identities

PsA0(n, n)Pf = Pf A0(n, n)Ps = 0 (39)

we deduce from the unprimed version of (26)

ṽs(z; n, n) = Ps [zPs − iPsA0(n, n)Ps ]−1Ps[vs(t = 0; n, n)

+ iPsS(n, n)Ps ṽs (z; n + 1, n + 1) + iλPsT (n, n)Ps ṽs (z; n − 1, n − 1)

+ iPsA1(n, n)Ps ṽs(z; n, n) + iPsS(n, n)Pf ṽf (z; n + 1, n + 1)

+ iλPsT (n, n)Pf ṽf (z; n − 1, n − 1) + iPsA1(n, n)Pf ṽf (z; n, n)] (40)

with n non-negative. To obtain a closed set, the interchange s ↔ f must be performed.
This provides us with the fast counterpart of (40). Note that the poles of the resolvent
Ps(f )[zPs(f ) − iPs(f )A0(n, n)Ps(f )]−1Ps(f ) generate residues of slow (fast) variation, so
vs(f )(t; n, n) is indeed a slow (fast) component.

For the special case of n = −1, equation (26) reduces to

ṽ(z; −1,−1) = z−1[v(t = 0; −1,−1) + iS(−1,−1)ṽ(z; 0, 0)]. (41)

One should remember that T (−1,−1) and A0,1(−1,−1) equal zero. To process (26) for the
case of m �= n, we return to expansion (34). It tells us that now all diagonals of A0 remain
finite as κ and γ become small. Consequently, a slow component of v does not exist. For
treatment of the case m �= n the result

ṽ(z; m,n) = I (n) ⊗ I (m)[z14 − iA0(m, n)]−1I (n) ⊗ I (m)[v(t = 0; m,n)

+ iS(m, n)ṽ(z; m + 1, n + 1) + iλT (m, n)ṽ(z; m − 1, n − 1)

+ iA1(m, n)ṽ(z; m,n)] (42)

is available. One should recognize that the vanishing of ρj (t)m,n for negative photon number
m or n leads to the identity

I (n) ⊗ I (m)v(t; m,n) = v(t; m,n) (43)

with m �= n. It has been employed in (42).

3.2. Limit of weak damping

We are ready to carry out the separation of timescales in (40). It is our aim to decouple the
recursion for ṽs(z; n, n) from that for ṽf (z; n, n). To that end, we make κ and γ small by
taking the following limit of weak damping:

κ = κ ′/ξ γ = γ ′/ξ. (44)

The auxiliary parameter ξ tends to infinity, whereas κ ′ and γ ′ remain finite.
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We remark that from here onwards, our treatment is no longer mathematically rigorous.
Contributions of first order in 1/ξ will be neglected against contributions of zeroth order. In
principle, simplifications of this kind must be supported by mathematical estimates. These
should demonstrate that all errors converge to zero as ξ becomes large. For the case of pure
photonic losses, it is indeed possible to put the limit of weak damping on a firm mathematical
basis [3, 8]. One could try to repeat that for the present setting. The disadvantage is that a
construction of the complete solutions of (40) cannot be avoided. We cut this time-consuming
path short by sorting out the implications of weak damping directly in (40).

According to (36), the poles of ṽs (z; n, n) are of order 1/ξ . Hence, the vector vs(t; n, n)

depends on time through the ratio t/ξ , something which can be stated explicitly via introduction
of the scaling z = y/ξ into the Laplace backtransform (25). One then concludes that the slow
vector

ws(y; n) = ξ−1ṽs (y/ξ; n, n) (45)

is of order unity for n � 0 and ξ large. The same is true for the fast vector

wf (z; n) = ṽf (z; n, n) (46)

because the poles of ṽf (z; n, n) are of order unity for n � 0 and ξ large.
The equations of motion for the vectors (45) and (46) are found upon taking ξ to infinity

in (40). It is assumed that: (i) one may drop contributions of order 1/ξ , such as ṽs,f (z; n, n)/ξ

and ṽf (y/ξ; n, n)/ξ , with z and y fixed; (ii) one may take the limits

M(n)(js) = lim
ξ→∞

ξPjM(n, n)Ps M(n)(jf ) = lim
ξ→∞

PjM(n, n)Pf (47)

with j = s, f and M = A0, A1, S, T . Since the matrices A1 and S are of order 1/ξ , they
do not survive the second limit. One furthermore checks that the limiting matrix T (n)(f s) is
identical to zero.

With the above guidelines in mind, one derives from the fast counterpart of (40) the simple
relation

wf (z; n) = Pf [zPf + i(2κn + κ + γ )Pf − iA0(n)(ff )]−1Pf vf (t = 0; n, n) (48)

where n is non-negative. In zeroth order of 1/ξ we do not meet terms containing the slow
component. In the resolvent the contributions with κ and γ should be retained, otherwise the
asymptotic limit (17) is compromised.

Equation (40) itself must be handled carefully. Due to the fact that T (n, n) is of order
unity, we meet the fast vector ṽf (y/ξ; n − 1, n − 1). With the aid of the fast counterpart of
(40), we can exchange it for an expression that solely depends on (45). In doing so, we arrive
for n � 0 at

ws(y; n) = Ps[yPs − iA0(n)(ss)]−1Ps

[
vs(t = 0; n, n)

+ iS(n)(ss)ws(y; n + 1) + iλT (n)(ss)ws(y; n − 1)

+ iA1(n)(ss)ws(y; n) − λθn−1T (n)(sf )A
−1
0 (n − 1)(ff )vf (t = 0; n − 1, n − 1)

− iλθn−1T (n)(sf )A
−1
0 (n − 1)(ff )S(n − 1)(f s)ws(y; n)

− iλθn−1T (n)(sf )A
−1
0 (n − 1)(ff )A1(n − 1)(f s)ws (y; n − 1)

]
. (49)

The identity T (n)(f s) = 0 ensures that the right-hand side does not include a term containing
ws(y; n − 2).

Next, we investigate the behaviour of (41) and (42) under the limit of weak damping. By
performing inverse Laplace transformation, and taking advantage of the fact that S(−1,−1)

is of order 1/ξ , we can reshape (41) as follows:

v(t; −1,−1) = v(t = 0; −1,−1) +
∮

dy

2π
y−1 exp(−iyt/ξ)S(−1)(f s)ws(y; 0) (50)



Limit of maximum entropy for the damped Jaynes–Cummings model 9899

where ξ must be chosen large. Because of the limit S(−1)(ff ) = 0, the vector ṽf (z; 0, 0) does
not contribute.

We recall that A0(m, n) is of zeroth order for m �= n. On the other hand,A1(m, n), S(m, n)

and T (m, n) are of order 1/ξ . We therefore may replace (42) by

ṽ(z; m,n) = I (n) ⊗ I (m)[z14 + i(κmθm + κnθn + κ/2 + γ /2)14

− iA0(m, n; κ = γ = 0)]−1I (n) ⊗ I (m)v(t = 0; m,n) (51)

with m �= n and ξ � 1. The terms proportional to κ and γ ensure that Laplace
backtransformation yields a result which decays to zero for large times.

The last remark implies that the limit of weak damping leaves the asymptotic behaviour
of the density operator intact. We make an explicit check for the case of λ = � = � = 0. All
poles generate damped residues, except for the pole at y = 0 in (50). This observation brings
us to the relation

lim
t→∞ v(t; m,n) = δm,−1δn,−1[v(t = 0; −1,−1) + iS(−1)(f s)ws(0; 0)]. (52)

We can eliminate ws(0; 0) by writing down the iterative solution of (49). This gives rise to
the relation

ws(0; 0) = i
∞∑

k=0

[
k−1∏
l=0

−A−1
0 (l)(ss)S(l)(ss)

]
A−1

0 (k)(ss)vs(t = 0; k, k). (53)

The right-hand side can be computed on the basis of the prescriptions (32) and (47). In
elaborating the matrix product, one must choose the order 0, 1, 2, . . . , k − 1 for the index l.
The right-hand side of (52) reduces to δm,−1δn,−1(0, 1, 0, 0)T , a result that confirms (17) for
λ = � = � = 0.

Equations (48)–(51) fully determine the density operator ρ(t) in the limit of weak
damping. The corresponding dynamics consists of two independent components, a slow
one and a fast one. The latter exhibits oscillations on the timescale of g−1. This feature rules
out the existence of any stable fixed points. Hence, in our search for a limit of maximum
entropy we must set our hopes on the normal modes of slow variation. But before commencing
this programme, we should make an important remark on the choice of the photon number n.
If one employs the limits (47), then one tacitly assumes that the ratio n/ξ tends to zero for ξ

large. Therefore, an increase of n is permitted only if n/ξ is kept small.

4. Evolution of the atomic density matrix

4.1. Calculation of matrix elements

As mentioned in section 1, the goal of this paper is to study the atomic density matrix

ρA(t) = TrF [ρ(t)]. (54)

More specifically, we are going to devise a limit under which ρA(t) converges to the central
state 12/2. Then the von Neumann entropy of the atom, given by −TrA[ρA log ρA], attains its
maximum value of log 2.

By (10), (11) and (20) the entries of the atomic density matrix can be calculated from

ρA(t)22 = 1 − ρA(t)11 = (1 + n̄)

∞∑
n=−1

v′(t; n, n)2

ρA(t)12 = ρA(t)∗21 =
∞∑

n=0

v′(t; n, n − 1)3.

(55)
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We have made use of the fact that ρA(t) is Hermitian, and that its trace is equal to unity. The
primes can be removed through application of transformation (32). From I, we already know
that ξ becomes large in the limit of maximum entropy. Hence, in working out (55) we may
appeal to the findings of the previous section.

Upon substituting the results (48) and (51) into the Laplace backtransform (25), we learn
that

(1 + n̄)−1ρA(t)22 = v(t = 0; −1,−1)2 +

[∮
dy

2π
y−1 exp(−iyt/ξ)S(−1)(f s)ws(y; 0)

]
2

+

[ ∞∑
n=0

exp(−2κtn − κt − γ t)U(n, n)

∮
dz

2π i
exp(−izt)Pf

× [zPf − iA0(n)(ff )]
−1Pf vf (t = 0; n, n)

]
2

+

[ ∞∑
n=0

U(n, n)

∮
dy

2π i
exp(−iyt/ξ)ws (y; n)

]
2

(56)

ρA(t)12 =
[ ∞∑

n=0

U(n, n − 1) exp[−κtn − κt (n − 1)θn−1 − (κ + γ )t/2]
∮

dz

2π i
exp(−izt)

× I (n − 1) ⊗ I (n)[z14 − iA0(n, n − 1; κ = γ = 0)]−1

× I (n − 1) ⊗ I (n)v(t = 0; n, n − 1)

]
3

. (57)

As pointed out, these results are valid for ξ � 1, so one may also expand the transformation
U(m, n). In the second contribution of (56), as well as in (57), the integration variable z has
been transformed such that damping factors explicitly appear.

The last contribution of (56) originates from the modes of slow variation. It can be
evaluated in a convenient manner by proposing the expansion

ws(y; n) =
∞∑
l=1

y−lPs b̃(l, n) (58)

with n � 0. This is equivalent to expanding the exponential factor of the Laplace
backtransform. Substitution of (58) into (49) produces the following recursion in l and n:

Ps b̃(l, n) = [iA0(n)(ss)]l−1Ps b̃(1, n) + i
l−1∑
q=1

[iA0(n)(ss)]q−1S(n)(ss)Ps b̃(l − q, n + 1)

+ iλ
l−1∑
q=1

[iA0(n)(ss)]q−1T (n)(ss)Ps b̃(l − q, n − 1)

+ i
l−1∑
q=1

[iA0(n)(ss)]
q−1A1(n)(ss)Ps b̃(l − q, n)

− iλθn−1

l−1∑
q=1

[iA0(n)(ss)]
q−1T (n)(sf )A

−1
0 (n − 1)(ff )S(n − 1)(f s)Ps b̃(l − q, n)

− iλθn−1

l−1∑
q=1

[iA0(n)(ss)]q−1T (n)(sf )A
−1
0 (n − 1)(ff )

× A1(n − 1)(f s)Ps b̃(l − q, n − 1) (59)
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where the conditions l � 1 and n � 0 must be imposed. For the vector with l = 1 the result

Ps b̃(1, n) = vs(t = 0; n, n) − λθn−1T (n)(sf )A
−1
0 (n − 1)(ff )vf (t = 0; n − 1, n − 1) (60)

is found.
A simple iteration in integer l furnishes the solution of (59). At the same time, the

ensuing expressions are rather lengthy. If the detuning parameter is set equal to zero, the
going becomes much easier. From equations (29)–(31) one derives

U(n, n) = U0 +
i(γ ′ − κ ′)

2ξ(n + 1)1/2
U1

U0 = 1

2




0 2 2 0
1 −1 −1 1
0 −2 2 0
2 0 0 −2


 U1 =




0 −1 1 0
0 1 −1 0
1 1 1 1
0 0 0 0




(61)

up to first order in 1/ξ , and for n non-negative.
All matrices figuring in (59) can be calculated now with relative ease. One should employ

(23), (24), (32) and (36). Note that U1 makes a contribution to T (n)(ss). In view of (56) it is
meaningful to switch to the new vectors

b(l, n) = il−1




1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


U0Ps b̃(l, n) (62)

with l � 1 and n � 0. Still keeping � zero, one succeeds in extracting from (59) the less
involved recursion

b(l, n) = (2κ ′n + κ ′ + γ ′)l−1b(1, n) −
l−1∑
q=1

(2κ ′n + κ ′ + γ ′)q−1

× {[κ ′(2n + 3) + γ ′]b(l − q, n + 1) + λθn−1[κ ′(2n − 1) + γ ′]b(l − q, n − 1)

− λ[κ ′(2n + 2 − θn−1) + γ ′(2 − θn−1)]b(l − q, n)}. (63)

Use of (62) in (60) gives

b(1, n)j = 1
2δj,2 [v(t = 0; n, n)1 + v(t = 0; n, n)4

− λθn−1v(t = 0; n − 1, n − 1)2 − λθn−1v(t = 0; n − 1, n − 1)3] (64)

with j = 1, 2, 3, 4. Note that the parameter � for atomic dephasing has disappeared from our
equations.

In solving (63), the above equality serves as the initial condition. One may write

b(l, n) =
n+l−1∑

s=n−l+1

θsd(l, n, s)b(l = 1, s) (65)

with l � 1 and n � 0. As is evident from (56), the sum
∞∑

n=0

b(l, n) =
∞∑

s=0

b(1, s)

s+l−1∑
n=s−l+1

θnd(l, n, s) (66)

should be computed. We can prove the following remarkable identity:
s+l∑

n=s−l

θnd(l + 1, n, s) = (1 + λ)(κ ′ + γ ′)d(l, n = 0, s)θl−s−1. (67)
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The integers l − 1 and s are non-negative. In principle, the coefficient d(l, n = 0, s) remains
to be calculated. Fortunately, we can do without this degree of precision.

The proof of (67) relies on the recursion relation for the coefficients {d(l, n, s)}, which
can be derived by substituting (65) into (63). In the source term a Kronecker delta δn,s is
contained. On the left-hand side of (67) one makes use of the recursion for d(l + 1, n, s).
In eliminating the source term with δn,s , one resorts to the recursion for d(l, n, s). Upon
performing suitable shifts of summation indices, one is left with the right-hand side of (67).

4.2. Convergence to the central state

Having completed all necessary computations, we can pass over to choosing the initial density
operator ρ(t = 0; α). We assume a dependence on the positive parameter α. For a coherent
initial state, α would be the norm of the coherence parameter. However, the details of
ρ(t = 0; α) need not be specified. This operator should merely obey the constraint

lim
α→∞〈m|ρj (t = 0; α)|n〉 = 0 (68)

for j = 1, 2, 3, 4, where we refer to the decomposition (10). The labels of the number states
|m〉 and |n〉 must be kept fixed. Note that one may choose initial states for which the atom and
field are entangled.

Although the above assumption is not strong at all, it has a striking effect on formulae
(56) and (57). From the definition of v(t; m,n) we infer that for m and n fixed the limit

lim
α→∞ v(t = 0; m,n) = 0 (69)

holds true. The recursions (59) and (60) tell us that for l and n fixed we may also exploit the
limit

lim
α→∞ b̃(l, n) = 0. (70)

The tilde may be omitted if desired.
In (56) and (57) we let both α and ξ tend to infinity. We wish the product κt to stay

finite, so (44) forces us to set t = t ′ξ , with κ ′ > 0 and t ′ > 0. By (69), the summand
of (57) converges to zero for α → ∞, at least, as long as n � n0, with n0 fixed. In front
of the remaining summation an exponential factor of exp(−κ ′t ′n0) figures. The latter can
become arbitrarily small, because there is no bound on the integer n0. As a consequence, the
off-diagonal ρA(t)12 decays to zero for α and ξ large. A similar argument can be applied to
the summation in (56) that depends on the fast modes.

The handling of the slow terms of (56) requires substitution of the expansion (58). We
shall interchange the sum over l with the limit of α, ξ → ∞. This step can be justified for the
special case of γ = 0, α = q and ρ(t = 0; α) = ρA ⊗ |q〉〈q|, where |q〉 denotes a number
state [8].

The term containing ws(y; 0) essentially reduces to the sum
∑∞

l=1(−it ′)lb̃(l, 0)/ l!, which
converges to zero for α → ∞. Use should be made of the property (70) and the interchange
that has been given above. All in all, formulae (56) and (57) clear up a lot as soon as one
invokes the assumption (68).

We still have to process the third summation on the right-hand side of (56). Now the
identities (66) and (67) come into play. We are led to

ρA(t)22 = (1 + n̄)

∞∑
n=0

b(1, n)2 + (1 + 2n̄)(κ ′ + γ ′)
∞∑
l=1

(−t ′)l
l−1∑
s=0

b(1, s)2d(l, 0, s)/ l! (71)



Limit of maximum entropy for the damped Jaynes–Cummings model 9903

where α and ξ must be chosen large. Once more we let α tend to infinity behind a sum over l.
Then, on account of (70), the second contribution vanishes. Evaluation of the first contribution
is straightforward. Employing the fact that the trace of ρ(0; α) is normalized to one, we find
that ρA(t)22 converges to 1/2 for α, ξ → ∞.

Before presenting our limit of maximum entropy, we are obliged to discuss the relation
between the large parameters α and ξ . This relation stems from the fact that terms of order
n/ξ were neglected during the derivation of equations (48)–(51). Before closing the previous
section, we already pointed out that increase in the photon number n should be carefully
observed. The computation of the atomic density matrix allows for such an increase, because
a sum over all photon numbers is performed. It is far from simple to come up with a sufficient
condition that supports the disregard of contributions of order n/ξ . We shall have to content
ourselves with some qualitative considerations.

If we refrain from taking the limit of weak damping, then we must compute the density
matrix ρA(t) on the basis of (40) and (42). Now the summands of (55) include contributions
of order n/ξ . On the other hand, the initial vectors {v′′(t = 0; n, n)} still act as weights.
Apparently, the limit of weak damping stands or falls with the assertion that terms of order

∞∑
n=1

v′′(t = 0; n, n)jn/ξ ∼ εF /ξ (72)

may be dropped. The dimensionless energy density of the initial field is defined as

εF = Tr[a†aρ(t = 0; α)]. (73)

By elaborating the trace with the help of number states, one roughly recovers the left-hand
side of (72) for j = 1 and j = 4. The two other values of j do not matter. The positivity of
ρ(t = 0; α) implies that

|v′′(t = 0; n, n)j |2 � v′′(t = 0; n, n)1v′′(t = 0; n, n)4 (74)

for j = 2, 3.
It is important to recognize that εF becomes infinitely large under the limit of α → ∞.

This follows from (68) and the normalization Tr[ρ(t = 0; α)] = 1. Hence, the assertion (72)
prescribes that the limit of maximum entropy must be taken under the constraint ξ = (εF )δ,
with δ > 1. To fix δ we appeal to an earlier work for the case of pure photonic damping, that is
to say, the case γ = 0. Taking a number state as the initial condition for the density operator,
one demonstrates that the choice δ = 3 constitutes a sufficient condition for discarding the
order of n/ξ [8]. We assume that δ need not be augmented if the atomic reservoir is activated
again. Therefore, the relation between α and ξ reads εF (α) = ξ1/3, where for the case of a
coherent state the equality εF = |α|2 must be substituted.

We are ready to present the main result of this paper, a limit of maximum entropy for the
atomic density operator of the damped Jaynes–Cummings model. The limit is given by

˜lim
κ→0
γ→0
t→∞
ξ→∞

ρA(t) = 1
2 12.

(75)

The tilde denotes that the constraints κ = κ ′/ξ , γ = γ ′/ξ, t = t ′ξ and εF = ξ1/3 must be
obeyed. The parameters κ ′, γ ′, t ′, n̄, |�| and � may have any fixed positive value, provided
that condition (8) is respected. Finally, one should not forget that the initial density operator
must be in keeping with property (68).

For the case of � �= 0 we do not go through a detailed derivation of (75), but merely
make a qualitative comment. An inspection of dependences shows that the detuning parameter
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manifests itself in (55) through the ratio �/n1/2. Owing to (69), the photon number n becomes
large in the limit (75). Therefore, the aforementioned ratio will tend to zero, and the limit will
produce the same answer as for the case of zero detuning. The soundness of this argument
can be verified immediately for the contributions to (56), which emanate from the l = 1 and
l = 2 terms of (58). In contrast, an adequate treatment of all terms of (58) demands major
efforts. Hence, for � �= 0 the limit (75) should be regarded as a conjecture.

5. Extension to pure atomic damping

5.1. Bound on diagonal matrix elements

Until now we have taken the parameter for cavity damping κ as strictly positive. In the
following, we shall study the atomic evolution for the case of κ = 0 and γ > 0; then
all of the energy losses stem from spontaneous emission of photons by the two-level atom.
Consequently, the damping mechanism gets a sequential character. The cavity mirrors can let
through any number of photons at a time, but the atom can emit only one photon at a time.

By choosing κ equal to zero, we intend to demonstrate that a change of damping
mechanism does not affect the existence of a limit of maximum entropy. In other words,
in this section the important issue of universality is under investigation. For that reason we
must maintain mathematical rigour. To avoid a high degree of complexity, we set �, � and
d∞ + 1/2 equal to zero. We thus work at zero temperature. The atomic damping parameter
γ will become small, so the inequality γ < 1 can be freely used. Last, we opt for the initial
condition

ρ(t = 0) = ρA ⊗ |q〉〈q| (76)

where ρA stands for any atomic density matrix and |q〉 denotes a number state, with
q = 1, 2, 3, . . ..

From (10) and (11) it follows that the atomic density matrix is determined by

ρA(t)11 =
∞∑

n=0

v′′(t; n, n)1 ρA(t)12 =
∞∑

n=0

v′′(t; n, n − 1)3. (77)

For the evaluation of the above sums we return to (12), where the choice κ = λ = � = � = 0
is made. Upon performing Laplace transformation and iteration [14], we arrive at

ρA(t)11 = ρA,11[2f1(t; 0, q) + 4γ 2f1(t; 1, q − 1) + 16qγ 2f1(t; 2, q − 2) + f2(t; 1, q)]

+ ρA,22[2f1(t; 0, q − 1) + f2(t; 0, q − 1)]. (78)

The new functions are given by

f1(t; h, q) =
q∑

k=0

(q + 1)!(−1)hγ k e−γ t

k!(q − k)!4h+1

k∑
l=0

(
k

l

)
tk−lg(x = 0; k + h, l, q + h + 1) (79)

and

f2(t; h, q) = 1

4

∑
η=±1

q∑
k=0

k∑
l=0

q!(−1)l

l!(q − k)!(k − l)!

[
iηγ

2u(q − l)

]k

×
[

2h +
ihηγ

u(q − l)
− q + 1

u2(q − l)

]
exp [−γ t + 2iηtu(q − l)] (80)
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with h = 0, 1, 2 and q + 1 non-negative. We have to work out the derivative

g(x; k, l, q) =
(

d

dx

)l k∏
s=0

(x2/4 − γ 2/4 + q − s)−1 (81)

for 1 � l � k and set x = 0 afterwards.
In (79) we put the summation index l equal to zero;we call the ensuing function f3(t; h, q).

For l = 0 a differentiation need not be performed in (81), so we obtain after some minor algebra

f3(t; h, q) = (q + 1)!(−1)h e−γ t

(q + h + 1)!4h+1

q∑
k=0

(γ t)k

k!

+ γ 2
q∑

k=0

k∑
l=−h

(q + 1)!(q − l)!(−1)h(γ t)k e−γ t

k!(q + h + 1)!(q − k)!4h+2

q−l+1∏
s=q−k+1

(s − γ 2/4)−1. (82)

The first term on the right-hand side corresponds to the choice of γ = 0 in (81).
The case of l � 1 can be dealt with on the basis of the following auxiliary identities:(

d

dx

)l

f (x2) =
[l/2]∑
p=0

l!(2x)l−2p

p!(l − 2p)!

(
d

dx2

)l−p

f (x2) (83)

and(
d

dx

)l k∏
s=0

(x − s)−1 = (−1)ll!
k∏

s=0

(x − s)−1
min(l,k+1)∑

r=1

k∑
s1,s2,...,sr=0

′ (x − s1)
r−l−1

(r − 1)!
∏r

j=2(s1 − sj )
.

(84)

The prime imposes the condition that all indices {sj } be different from each other. Verification
of (83) and (84) can be done with the help of induction in l.

In (79) we exclude the term with l = 0; we call the ensuing function f4(t; h, q). In
explicit terms, one has f1 = f3 + f4. The new function can be expressed as

f4(t; h, q) =
q∑

k=2

[k/2]∑
p=1

min(p,k+h+1)∑
r=1

k+h∑
s1,s2,...,sr=0

′

× (q + 1)!(−1)(−4)−h−p−1γ ktk−2p e−γ t (q + h + 1 − γ 2/4 − s1)
r−p−1

(k − 2p)!(q − k)!(r − 1)!
∏r

j=2(s1 − sj )
∏k+h

s=0(q + h + 1 − γ 2/4 − s)
.

(85)

With the notation [· · ·] the entire function is meant. The results (80), (82) and (85) completely
specify the diagonals of the atomic density matrix. Our next task is the construction of suitable
bounds.

To establish a bound on the double summation in (82), we take the norm of the summand.
In the product over s we set γ equal to 2 for s � q − k + 2, thus reducing the product to a
factorial. In the sum over k we separate the term with k = q from the others, for which we
choose γ = 2 again. These manipulations lead us to the inequality∣∣∣∣∣f3(t; h, q) + (−4)−h−1

h+1∏
s=2

(q + s)−1

∣∣∣∣∣ � (γ t)q

q!
+

2γ 2(1 + γ t)(h + 1)

1 − γ 2/4
. (86)

The second term on the left-hand side and the first term on the right-hand side arise from
the summation over k in (82).
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The derivation of a bound on f4 starts from the inequality

(q + h + 1)!

(q − k)!

k+h∏
s=0

(q + h + 1 − γ 2/4 − s)−1 � (1 − γ 2/4)−q−h−1 (87)

which is valid for k � q . Next, we separate the sum over s1 from the sums over {sj }rj=2, and
omit the prime. This offers the possibility of employing the inequality

k∑
s=0(s �=s1)

|s − s1|−1 � 2
k∑

s=1

s−1. (88)

The right-hand side appears r − 1 times.
The sum over s1 can be controlled by retaining the largest term, which is the one with

s1 = k + h, and multiplying by the number of terms, which amounts to k + h + 1. These
operations provide us with the intermediate inequality

|f4(t; h, q)| �
q∑

k=2

[k/2]∑
p=1

p∑
r=1

(k + h + 1)(1 − γ 2/4)−q−h−1γ ktk−2p e−γ t

4h+p+1(k − 2p)!(r − 1)!
∏h

s=1(q + s + 1)

× (q − k + 1 − γ 2/4)r−p−1

(
2

k+h∑
s=1

s−1

)r−1

. (89)

In the factors of (k + h+ 1) and (q − k + 1 −γ 2/4)r−p−1, as well as in the sum over s, k may be
set equal to its maximum value of q. Next, we perform the transformation k′ = k − 2p, and
interchange the sums over p and r. Our last step consists of the transformation p′ = p − r .

Now we are in a position to replace the upper boundaries of all three summations by
infinity. This results in two exponential series and one geometric series. Further simplification
is brought about by the inequality

∑q

s=1 s−1 � 2q1/2. In final form, the bound is given by

|f4(t; h, q)| � 3γ 2q(1 − γ 2/4)−q exp(2γ 2q1/2). (90)

We have used that h is smaller than 2.
The function f2 does not pose any particular problem. Expression (80) gives rise to the

bound

|f2(t; h, q)| � 14q(1 + 2γ )q e−γ t . (91)

We have utilized the fact that for γ � 1 the result u(n) � 1/2 is true.

5.2. Bound on off-diagonal matrix elements

The evaluation of the off-diagonal (77) does not differ much from the procedure that determines
the diagonal elements. By combining Laplace transformation with iterative methods, one
obtains

ρA(t)12 = 1
16ρA,12 [2f5(t; q) + f6(t; q) + 8f7(t; q) + f8(t; q)] . (92)

If we introduce the abbreviations

rη1,η2(n) = η1u(n) + η2u(n − 1) + iγ sη = ηu(0) + iγ /2 (93)

then the functions on the right-hand side of (92) can be expressed as

f5(t; q) =
∑

η1,η2=±1

η1η2 exp[itrη1,η2(q)]

u(q)u(q − 1)r ′
η1,η2

(q)

[
r ′
η1,η2

(q)
∣∣rη1,η2(q)

∣∣2 − 2qr ′
η1,η2

(q) − rη1,η2(q)
]
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f6(t; q) =
∑

η1,η2=±1

q−1∑
k=1

k∑
l=0

η1η2 exp
[
itrη1,η2(q − l)

]
q!(4iγ )k

u(q − l)u(q − l − 1)(q − k)!

[
r ′
η1,η2

(q − l)
]k−2

× [
r ′
η1,η2

(q − l)r∗
η1,η2

(q − l) − 1
] [

r ′
η1,η2

(q − l)rη1,η2(q − l) + 1
]

×
k∏

s=0(s �=l)

∏
η3,η4=±1

[
r ′
η3,η4

(q − s) − r ′
η1,η2

(q − l)
]−1

f7(t; q) =
∑
η=±1

η exp[itsη]
q!(4iγ )q

u(0)
(s∗

η )q−1
q∏

s=1

∏
η1,η2=±1

[
r ′
η1,η2

(s) − s∗
η

]−1

f8(t; q) =
∑

η1,η2=±1

q∑
k=1

η1η2 exp
[
itrη1,η2(k)

]
q!(4iγ )q

u(k)u(k − 1)

[
r ′
η1,η2

(k)
]q−2[

r ′
η1,η2

(k)rη1,η2(k) + 1
]

×
∏

η=±1

[
r ′
η1,η2

(k) − s∗
η

]−1
q∏

s=1(s �=k)

∏
η3,η4=±1

[
r ′
η3,η4

(s) − r ′
η1,η2

(k)
]−1

. (94)

The notation r ′ = Re(r) has been used.
The inequalities γ � 1 and 1/2 � u(q) � (q + 1)1/2 lead us to the bound

|f5(t; q)| � 104q2 e−γ t . (95)

Moving on to f6, we observe that the denominators in the product over s can be controlled by
means of the inequalities∏
η1,η2=±1

∣∣r ′
+,ηη1

(q − s) + r ′
η2,ηη2

(q − l)
∣∣−1 � δη,+1

|l − s|u2(q − l)
+

4δη,−1[r ′
+,+(q − l)]2

|l − s| (96)

where η equals ±1 and l differs from s. The choice of η = +1 (−1) corresponds to the terms
of f6 with η1η2 = +1 (−1). For the latter case, it is important to take advantage of the identity

r ′
+,+(q)r ′

+,−(q) = 1. (97)

The bound for η = +1 is much smaller than the one for η = −1, so the former may be omitted.
One can finalize the estimate for f6 as follows:

|f6(t; q)| � 105q3(1 + 128γ q1/2)q e−γ t . (98)

We also need the bound

|f7(t; q)| + |f8(t; q)| � 10(8γ )q e−γ t/2 + 102q2(128γ q1/2)q e−γ t . (99)

It can be proved in the same manner as (95) and (98).

5.3. Limit of maximum entropy

All of the bounds, which have been proved in the preceding subsections, converge to zero if
γ is made small such that the products γ 4/3t and γ 2/3q remain constant. As a consequence,
all functions {fj }8

j=2 converge to zero as well, except for f3(t; h = 0, q). This last function
tends to 1/4.

With the help of the normalization condition ρA,11 + ρA,22 = 1, we deduce from (78) and
(92) the following statement:

ˆlim
γ→0
t→∞
q→∞

ρA(t) = 1
2 12.

(100)
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The hat indicates that the limit must be taken under the constraint that γ 4/3t and γ 2/3q are
constant. The parameters κ , � and � are identical to zero. The same goes for the temperature
of the atomic reservoir. We emphasize that the route from the master equation (3) to the above
limit of maximum entropy is completely rigorous.

The limit (100) may be regarded as a counterpart of (75). We thus conclude that a
modification of the damping mechanism does not affect the status of the central state as a
stable fixed point. Yet there is a difference with the case of photonic damping. If the cavity
mirrors act as energy sinks, then the convergence to the central state is driven by an exponential
factor of exp(−κtq). The number of initial photons q becomes large, so the product κt may
be chosen as finite. For the case of pure atomic damping the photon number q is lacking.
The bare exponential exp(−γ t) is responsible for convergence. Hence, the product γ t can no
longer stay finite. This is the mathematical consequence of adopting a damping mechanism
that has a sequential character.

6. Conclusion

One of the main objectives of non-equilibrium statistical mechanics is the microscopic
derivation of a general principle that is akin to the second law of thermodynamics [4]. This
almost antique problem [15] cannot be ignored if we wish to complete our understanding of
irreversible behaviour. We should systematically explore what the dynamics of open quantum
systems can tell us about entropy and related notions.

We can evade the unyielding many-body theories by focusing on the evolution of a small
quantum system that is coupled to a large thermal reservoir. The advantage is that quite often,
it is possible to obtain the exact solution for the density operator. Then we can try to acquire
information on the dynamics without the use of numerical means. The choice to banish the
origin of irreversibility to the reservoir furthermore enables us to work in a Hilbert space
of finite dimension. Such a setting minimizes the risk of being hindered by mathematical
technicalities.

The relevance of quantum entropy for small open systems cannot be questioned. Many
encouraging results were reported already [16]. For instance, by employing the fruitful concept
of relative entropy [17], and assuming a Markovian master equation for the density operator
[18], one succeeds in formulating a quantum counterpart of the second law [12, 19]. The
associated entropy production is strictly non-negative. This entropy production derives, at
root, from the unitary and reversible quantum dynamics of system and reservoir together.
Hence, a sound connection to the Schrödinger equation definitely exists.

In carrying out a microscopic derivation of Markovian master equations, one cannot
avoid taking either a weak-coupling [10] or a singular-coupling [20] limit. As desired, these
procedures bring about irreversibility, but on the other hand, they erase all traces of unitary
dynamics. Consequently, in the evolution of the quantum system an essential stage is lacking,
namely, the cross-over from quasi-reversible dynamics to smooth irreversible decay. Precisely
this stage should provide us with new and valuable insights into the onset of irreversibility.

In our opinion, a quantum substitute for the second law may be called mature, only if
it can be applied outside the framework of Markovian master equations. Unfortunately, it is
very hard to get access to the non-Markovian regime, as every worker on quantum dissipation
knows. One may make a start by undertaking some careful case studies, and deriving as many
exact results as possible. The damped Jaynes–Cummings model is perfectly suited for these
purposes. Evidently, the full density operator for the atom and field mode obeys a Markovian
master equation. However, the atomic density matrix, which is obtained by taking a partial
trace over the field, undergoes a highly non-Markovian evolution. For times of order g−1,
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where g denotes the coupling constant of the Jaynes–Cummings interaction, the dynamics
exhibits the well-known Rabi oscillations [1]. These indeed possess a quasi-reversible
character.

In paper I, an extensive numerical study of the Jaynes–Cummings model with cavity
damping was presented. The evolution of the atomic density matrix was scrutinized for
the case of weak damping. The atom conformed to expectations by making a very slow
transition to the final stage of exponential decay. Surprisingly, the central state 12/2 turned
out to be the main attractor in atomic phase space. For small damping parameter, typically
κ � 0.01, and high energy density of the initial electromagnetic field, typically εF � 25, all
atomic trajectories met at the central state. There they stayed for a long time of the order
of (gκ)−1, whereafter they all followed the same Markovian path to the atomic ground state.
Of course, one should not overlook the possibility, however improbable it may be, that the
aforedescribed course of events was the result of artefacts, caused by an unrealistic choice
of parameters. For instance, in paper I the cavity temperature was set equal to zero. If that
argument were valid, then there would be no point in searching for any physically relevant
conclusions.

In this paper, we have derived a universal limit of maximum entropy for the two-level atom.
With this result in hand, we can brush aside all reservations about the role of the central state
as the main attractor. Indeed, our treatment is completely free from any particular choice of
parameters or states. The temperature and detuning differ from zero;both the atom and field are
coupled to a thermal reservoir, albeit that equation (8) must be satisfied; any state that complies
with the constraint (68) may be taken as the initial density operator. The last possibility implies
that entanglement of the atom and field may occur at time zero. In addition, we have checked
that the restriction to pure atomic damping does not harm the limit of maximum entropy.
Therefore, we believe that our findings might be of help in clarifying the status of entropy
for evolutions of non-Markovian nature, far from thermodynamic equilibrium. Proposals for
further research were already made in I. As a start, one could try to devise a formula for
entropy production that properly deals with the oscillatory character of limit (75).

In closing, we point out once more that, due to identity (8), the composite system of
atom and field mode respects the condition of detailed balance. Hence, it is possible to
reconcile the asymptotic evolution of the composite system with the principles of irreversible
thermodynamics. Use should be made of the powerful formalism that was developed for
dissipative quantum evolutions of Markovian character [12, 18, 19]. One proves that the
density operator ρ(t) of the composite system converges to the factorized thermal state (9) as
t becomes large. Furthermore, one can harmonize the accompanying irreversible behaviour
with the second law of thermodynamics. Given these satisfactory achievements, one might
reject any attempt to search for a thermodynamic explanation of the asymptotic evolution of
the atom alone.

The foregoing point of view would be viable, if the atomic evolution were not displaying
any signs of irreversible behaviour. This is certainly the case for a single gas atom that is
contained in a vessel together with a large number of other gas atoms. However, in the damped
Jaynes–Cummings model the atom interacts with a large thermal reservoir. Irreversible
behaviour is manifestly present and, more important still, it is of a novel type. In atomic
phase space all trajectories convene at the central state. Hence, the attractor is not the thermal
but the central state. Moreover, the approach to the attractor is not smooth but oscillatory.
It will be most instructive to investigate how the irreversible atomic evolution, as found in
this work, relates to the principles of non-equilibrium thermodynamics. The damped Jaynes–
Cummings model represents a unique chance to improve our understanding of quantum
irreversibility.
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